

$$
f^{\prime}(x)=2 x^{3}+6 x^{2}
$$

$$
F^{\prime \prime}(x)=6 x^{2}+12 x
$$

$$
0=6 x^{2}+12 x
$$

concave up:

$$
0=6 x(x+2)
$$

$$
(-\infty,-2) \cup(0, \infty)
$$

concave down:

$$
0,-2
$$

$$
F^{\prime \prime}(-3)=18
$$

$$
(-2,0)
$$

$$
F^{\prime \prime}(-2)=0
$$

$$
\begin{aligned}
& F^{\prime \prime}(-1)=-6 \\
& F^{\prime \prime}(0)=0 \\
& F^{\prime \prime}(1)=18
\end{aligned}
$$

23) $f(x)=\frac{1}{4} x^{4}-2 x^{2}$

$$
\begin{array}{ll}
F^{\prime}(x)=x^{3}-4 x & F^{\prime \prime}(-2)=8 \\
F^{\prime \prime}(x)=3 x^{2}-4 & f^{\prime \prime}\left(-\frac{2}{\sqrt{3}}\right)=0 \\
0=3 x^{2}-4 & f^{\prime \prime \prime}(0)=-4 \\
4=3 x^{2} & f^{\prime \prime}\left(\frac{2}{\sqrt{3}}\right)=0 \\
\frac{4}{3}=x^{2} & f^{\prime \prime}(2)=8 \text { concave \& } \\
\pm \frac{2}{\sqrt{3}}=x & \text { concave t } \\
& \\
& \text { concave up : }\left(-\infty,-\frac{2}{\sqrt{3}}\right) \cup\left(\frac{2}{\sqrt{3}}, \infty\right)
\end{array}
$$

25)

$$
\begin{aligned}
& \begin{array}{l}
F(x)=x(x-4)^{3} \\
F^{\prime}(x)=1(x-4)^{3}+\left(x \cdot 3(x-4)^{2}(1)\right.
\end{array} \\
& f^{\prime \prime}(x)=3(x-4)^{2}+3(x-4)^{2}+3 x \cdot 2(x-4) \\
& =3(x-4)^{2}+3(x-4)^{2}+6 x(x-4) \\
& =6(x-4)^{2}+6 x(x-4) \\
& =6(x-4)[x-4+x] \\
& \begin{array}{l}
\text { We really are only } \\
\text { interested in what is }
\end{array} \\
& \begin{array}{l}
\text { interested in what is } \\
\text { positive and negative. }
\end{array} \\
& =6(x-4)(2 x-4) \\
& F^{\prime \prime}(1)=+ \\
& F^{\prime \prime}(2)=0 \\
& f^{\prime \prime}(3)=- \\
& f^{\prime \prime}(4)=0 \\
& F^{\prime \prime}(5)=+ \\
& \text { concave up },(-\infty, 2) \cup(4, \infty) \\
& \text { concave down }(2,4)
\end{aligned}
$$

29) $F(x)=\frac{4}{x^{2}+1}$ Domain: \mathbb{R}

$$
\begin{aligned}
& F^{\prime}(x)=\frac{0-4(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-8 x}{\left(x^{2}+1\right)^{2}} \quad \begin{array}{c}
\text { cp. } \\
\text { at } \\
x=0
\end{array} \\
& F^{\prime}(x)=\frac{-8\left(x^{2}+1\right)^{2}+8 x\left[2\left(x^{2}+1\right) \cdot 2 x\right]}{\left(x^{2}+1\right)^{4}} \\
& \begin{array}{l}
F^{\prime \prime}(-)=2=\frac{\left(x^{3}+1\right)\left[-8\left(x^{2}+1\right)+32 x^{2}\right]}{\left(x^{2}+1\right)^{23}}=\frac{24 x^{2}-8}{\left(x^{2}+1\right)^{3}}=\frac{8\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}}
\end{array} \\
& F^{\prime \prime}(0)=-8 \\
& 3 x^{2}-1=0 \quad x^{2}=\frac{1}{3} \\
& F^{\prime \prime}\left(\frac{1}{3}\right)=0 \quad f^{\prime \prime}(1)=2 \\
& 3 x^{2}=1 \quad x=\frac{2}{-2} \frac{1}{\sqrt{3}} \\
& \text { concave up: } \\
& \left(-\infty,-\frac{1}{\sqrt{1}}\right) \cup\left(\frac{1}{\sqrt{3}}-\infty\right) \\
& \text { concave down: } \\
& \text { (}-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \text {) }
\end{aligned}
$$

27)

$$
x \sqrt{x+3}=f(x) \quad x \geq-3
$$

$$
\begin{aligned}
F^{\prime}(x) & =\sqrt{x+3}+\frac{x}{2 \sqrt{x+3}} \\
F^{\prime \prime}(x) & =\frac{1}{2 \sqrt{x+3}}+\frac{2 \sqrt{x+3}-x \frac{1}{2 \sqrt{x+3}}}{(2 \sqrt{x+3})^{2}} \\
& =\frac{1}{2 \sqrt{x+3}}+\frac{14(x+3)-x}{2 \sqrt{x+3} \cdot 4(x+3)} \\
& =\frac{4(x+3)+4(x+3)-x}{8 \sqrt{(x+3)} \sqrt{(x+3)^{2}}}=\frac{7 x+24}{8 \sqrt{(x+3)^{3}}} \\
x & =-24,-3
\end{aligned}
$$

